Convective lyapunov exponents and propagation of correlations

نویسندگان

  • Giacomelli
  • Hegger
  • Politi
  • Vassalli
چکیده

We conjecture that in one-dimensional spatially extended systems the propagation velocity of correlations coincides with a zero of the convective Lyapunov spectrum. This conjecture is successfully tested in three different contexts: (i) a Hamiltonian system (a Fermi-Pasta-Ulam chain of oscillators); (ii) a general model for spatiotemporal chaos (the complex Ginzburg-Landau equation); (iii) experimental data taken from a CO2 laser with delayed feedback. In the last case, the convective Lyapunov exponent is determined directly from the experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : c ha o - dy n / 99 11 02 5 v 1 1 8 N ov 1 99 9 General properties of propagation in chaotic systems

We conjecture that in one-dimensional spatially extended systems the propagation velocity of correlations coincides with a zero of the convective Lyapunov spectrum. This conjecture is successfully tested in three different contexts: (i) a Hamiltonian system (a Fermi-Pasta-Ulam chain of oscillators); (ii) a general model for spatio-temporal chaos (the complex Ginzburg-Landau equation); (iii) exp...

متن کامل

Space-time directional Lyapunov exponents for cellular automata

Space-time directional Lyapunov exponents are introduced. They describe the maximal velocity of propagation to the right or to the left of fronts of perturbations in a frame moving with a given velocity. The continuity of these exponents as function of the velocity and an inequality relating them to the directional entropy is proved.

متن کامل

6 Space - time directional Lyapunov exponents for cellular automata

Space-time directional Lyapunov exponents are introduced. They describe the maximal velocity of propagation to the right or to the left of fronts of perturbations in a frame moving with a given velocity. The continuity of these exponents as function of the velocity and an inequality relating them to the directional entropy is proved.

متن کامل

The Lyapunov Spectrum for Conformal Expanding Maps and Axiom-A Surface Diffeomorphisms

Lyapunov exponents measure the exponential rate of divergence of infinitesimally close orbits of a smooth dynamical system. These exponents are intimately related to the global stochastic behavior of the system and are fundamental invariants of a smooth dynamical system. In [EP], Eckmann and Procaccia suggested an analysis of Lyapunov exponents for chaotic dynamical systems. This suggestion was...

متن کامل

Lyapunov Exponents and Rates of Mixing for One-dimensional Maps

We show that one dimensional maps f with strictly positive Lyapunov exponents almost everywhere admit an absolutely continuous invariant measure. If f is topologically transitive some power of f is mixing and in particular the correlation of Hölder continuous observables decays to zero. The main objective of this paper is to show that the rate of decay of correlations is determined, in some sit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 85 17  شماره 

صفحات  -

تاریخ انتشار 2000